A fast and powerful W-test for pairwise epistasis testing

نویسندگان

  • Maggie Haitian Wang
  • Rui Sun
  • Junfeng Guo
  • Haoyi Weng
  • Jack Lee
  • Inchi Hu
  • Pak Chung Sham
  • Benny Chung-Ying Zee
چکیده

Epistasis plays an essential role in the development of complex diseases. Interaction methods face common challenge of seeking a balance between persistent power, model complexity, computation efficiency, and validity of identified bio-markers. We introduce a novel W-test to identify pairwise epistasis effect, which measures the distributional difference between cases and controls through a combined log odds ratio. The test is model-free, fast, and inherits a Chi-squared distribution with data adaptive degrees of freedom. No permutation is needed to obtain the P-values. Simulation studies demonstrated that the W-test is more powerful in low frequency variants environment than alternative methods, which are the Chi-squared test, logistic regression and multifactor-dimensionality reduction (MDR). In two independent real bipolar disorder genome-wide associations (GWAS) datasets, the W-test identified significant interactions pairs that can be replicated, including SLIT3-CENPN, SLIT3-TMEM132D, CNTNAP2-NDST4 and CNTCAP2-RTN4R The genes in the pairs play central roles in neurotransmission and synapse formation. A majority of the identified loci are undiscoverable by main effect and are low frequency variants. The proposed method offers a powerful alternative tool for mapping the genetic puzzle underlying complex disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further investigations of the W-test for pairwise epistasis testing

Background: In a recent paper, a novel W-test for pairwise epistasis testing was proposed that appeared, in computer simulations, to have higher power than competing alternatives. Application to genome-wide bipolar data detected significant epistasis between SNPs in genes of relevant biological function. Network analysis indicated that the implicated genes formed two separate interaction networ...

متن کامل

Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits

Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges...

متن کامل

Detecting Epistasis in Genome-wide Association Studies with the Marginal EPIstasis Test

Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges...

متن کامل

Fast pairwise IBD association testing in genome-wide association studies

MOTIVATION Recently, investigators have proposed state-of-the-art Identity-by-descent (IBD) mapping methods to detect IBD segments between purportedly unrelated individuals. The IBD information can then be used for association testing in genetic association studies. One approach for this IBD association testing strategy is to test for excessive IBD between pairs of cases ('pairwise method'). Ho...

متن کامل

Prioritizing tests of epistasis through hierarchical representation of genomic redundancies

Epistasis is defined as a statistical interaction between two or more genomic loci in terms of their association with a phenotype of interest. Epistatic loci that are identified using data from Genome-Wide Association Studies (GWAS) provide insights into the interplay among multiple genetic factors, with applications including assessment of susceptibility to complex diseases, decision making in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016